Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: covidwho-941660

ABSTRACT

Intracranial (i.c.) infection of susceptible C57BL/6 mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) (a member of the Coronaviridae family) results in acute encephalomyelitis and viral persistence associated with an immune-mediated demyelinating disease. The present study was undertaken to better understand the molecular pathways evoked during innate and adaptive immune responses as well as the chronic demyelinating stage of disease in response to JHMV infection of the central nervous system (CNS). Using single-cell RNA sequencing analysis (scRNAseq) on flow-sorted CD45-positive (CD45+) cells enriched from brains and spinal cords of experimental mice, we demonstrate the heterogeneity of the immune response as determined by the presence of unique molecular signatures and pathways involved in effective antiviral host defense. Furthermore, we identify potential genes involved in contributing to demyelination as well as remyelination being expressed by both microglia and macrophages. Collectively, these findings emphasize the diversity of the immune responses and molecular networks at defined stages following viral infection of the CNS.IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the molecular signatures of immune cells within the CNS at defined times following infection with a neuroadapted murine coronavirus using scRNAseq. This approach has revealed that the immunological landscape is diverse, with numerous immune cell subsets expressing distinct mRNA expression profiles that are, in part, dictated by the stage of infection. In addition, these findings reveal new insight into cellular pathways contributing to control of viral replication as well as to neurologic disease.


Subject(s)
Central Nervous System Infections/immunology , Central Nervous System Infections/virology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Host-Pathogen Interactions/immunology , Murine hepatitis virus/physiology , Animals , Central Nervous System Infections/genetics , Central Nervous System Infections/pathology , Computational Biology/methods , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Encephalomyelitis/genetics , Encephalomyelitis/immunology , Encephalomyelitis/pathology , Encephalomyelitis/virology , Gene Expression Profiling , H-2 Antigens/genetics , H-2 Antigens/immunology , Host-Pathogen Interactions/genetics , Immunity, Innate , Mice , Sequence Analysis, RNA , Single-Cell Analysis
2.
Glia ; 68(11): 2345-2360, 2020 11.
Article in English | MEDLINE | ID: covidwho-361267

ABSTRACT

The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.


Subject(s)
Brain/immunology , Coronavirus Infections/immunology , Host-Pathogen Interactions/immunology , Microglia/immunology , Murine hepatitis virus/immunology , Organic Chemicals/toxicity , Animals , Brain/drug effects , Brain/virology , Coronavirus Infections/chemically induced , Host-Pathogen Interactions/drug effects , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/virology
SELECTION OF CITATIONS
SEARCH DETAIL